
Department of Physics, Princeton University

Graduate Preliminary Examination
Part I

Thursday, May 11, 2017
9:00 am - 12:00 noon

Answer TWO out of the THREE questions in Section A (Mechanics) and TWO out of the
THREE questions in Section B (Electricity and Magnetism).

Work each problem in a separate examination booklet. Be sure to label each booklet with
your name, the section name, and the problem number.
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Section A. Mechanics

1. Dark Matter

There is evidence that the visible stars in our galaxy move in a very diffuse background
of dark matter. For simplicity, assume that in the neighborhood of a star, this dark
matter has a mass distribution that is spherically symmetric about the star. Consider
the effect of this extra matter on a planet orbiting around a star of mass M . The
dark matter interacts with the planet only via gravitational attraction. Assume that
near and inside the radius of planet’s orbit, the mass density ρ of the dark matter is
spatially uniform. Treat all motion and gravity nonrelativistically.

(a) Compute the angular frequency of a planet in circular orbit (radius R) about the
star.

(b) Show that a nearly circular orbit will precess and compute the angular amount of
precession per orbit. You may assume that the total mass of the dark matter inside a
sphere of radius equal to that of the planet’s orbit is small compared to the mass M
of the star.
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2. Falling Rod

A thin stick of length L with some mass distribution λ(x) along it is initially at rest.
It has one end (x = 0) on a horizontal table and initially makes an angle θ0 with the
vertical. Assume that the stick-table contact point has an infinite coefficient of friction
(so that the end of the stick can lift off the table, but cannot slide on it). The stick is
released from rest and allowed to fall to the table.

(a) Find the condition that the end of the stick initially in contact with the table does
not rise from the table as the stick falls. Express the condition in terms of θ0 and the
mass distribution along the stick.

(b) For a stick of mass concentrated in the middle λ(x) ∝ (L/2)2 − (x− L/2)2, what
range of angles θ0 keeps the stick in contact with the table throughout its fall?
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3. Disk with Three Springs
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A uniform disk of mass m and radius a rests on a horizontal frictionless surface. It is
symmetrically attached to three identical, ideal, massless springs of spring constant k
whose other ends are attached to the three vertices of an equilateral triangle.

At equilibrium, the length ` of the springs is greater than their relaxed length `0. The
disk remains in the initial horizontal plane but is otherwise free to move. (The diagram
shows the view looking down on the plane.) What are the frequencies of the normal
modes of small oscillations? What do the modes look like?
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Section B. Electricity and Magnetism

1. Plasma Waves

A ‘tenuous plasma” consists of free electrons with mass m and charge e. There are
n electrons per unit volume. Assume that the electron density is uniform and that
interactions between the electrons may be neglected. Electromagnetic waves (frequency
ω and wave number k) are incident on the plasma.

(a) Find the conductivity σ of the plasma as a function of ω.

(b) Find the dispersion relation; i.e. find the relation between k and ω.

(c) Find the index of refraction as a function of ω. What does it tell you about
the speed of wave propagation in the plasma? The plasma frequency is defined as
ω2
p = ne2/mε0 (in SI units). What happens if ω < ωp?
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2. Moving Bar Magnet
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(a) A long cylinder of radius r0 has uniform permanent magnetization density M
perpendicular to the axis of the cylinder. Find the fields B and H everywhere. Let
ẑ =axis of the cylinder, and M = Mx̂ as shown.

(b) Suppose the cylinder is given uniform velocity v = vẑ along its axis. Find the
resulting charge density and electric field everywhere. You may ignore effects of order
(v/c)2.
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3. Spinning Cylinder
Princeton University      PHYS 304 Final Exam Solutions Spring 2015 
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Problem 5. A cylindrical capacitor consists of a line of charge with 

charge density  and a concentric insulating tube of radius a with a 

uniform surface charge density =–a glued on its surface. The 

height of the capacitor H >>a, so you can ignore edge effects. The 

capacitor is placed in a uniform external magnetic field B0 parallel to 

its axis and pointing up. 

a) (10 pts) Find the magnitude and direction of the

electromagnetic angular momentum Lem stored in the EM

fields.

The insulating tube is free to rotate around its axis. Its mass M is all 

concentrated on the rim, so the mechanical angular momentum of the 

tube rotating at a frequency  is given by Lmech=a2


b) (10 pts) The external magnetic field B0 is very slowly ramped

down. Find the final angular velocity  of the insulating tube

when the external magnetic field is turned off. Note that this

does not necessarily mean that the magnetic field inside the tube is equal to zero.

The electric field inside the capacitor is equal to 
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  BErL . It is pointing down. When the magnetic 

field is turned off, the tube starts to rotate clock-wise. The rotation of the negatively charged tube 

causes its own magnetic field, pointing up. To calculate the magnetic field, you can imagine 

splitting the tube into rings of height dh. If the rotation frequency is , the current in each ring is 

dI=dha. The magnetic field is that of a solenoid, with current per unit length equal to dI/dh. 

The field is B=0a and the final angular momentum of the field is 
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 . Note that the additional term in 

the denominator has the units of electrostatic energy/c2. It is tempting to interpret it as moment of 

inertia of the electrostatic energy, but the exact correspondence is tricky. 
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A cylindrical capacitor consists of a line of charge with linear charge density λ and
a concentric insulating tube of radius a with a compensating uniform surface charge
density σ = −λ/2πa on its surface (fixed, not free to move). The height of the capacitor
H � a so that you can ignore edge effects. The capacitor is placed in a uniform
external magnetic field of strength B0 parallel to the cylinder axis and pointing up.
The insulating tube is free to rotate around its axis and its mass is all concentrated on
the rim.

(a) Find the magnitude and direction of the electromagnetic angular momentum stored
in the EM field.

(b) The external magnetic field B0 is very slowly ramped down. Show that this will
cause the tube to rotate and find the angular velocity of rotation when the external B
field is completely turned off.



Department of Physics, Princeton University

Graduate Preliminary Examination
Part II

Friday, May 12, 2017
9:00 am - 12:00 noon

Answer TWO out of the THREE questions in Section A (Quantum Mechanics) and TWO
out of the THREE questions in Section B (Thermodynamics and Statistical Mechanics).

Work each problem in a separate booklet. Be sure to label each booklet with your name,
the section name, and the problem number.
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Section A. Quantum Mechanics

1. Atom in a Cavity

Consider a simple model of a cavity mode of the electromagnetic field interacting
with a two-state system representing an atom which can absorb or emit cavity mode
photons. The Hamiltonian for this system is taken to be the sum of a harmonic
oscillator representing the cavity mode, a term which splits the energy of the two-state
system, and an interaction term:

H0 = εca
†a+

1

2
εaσz + γ(aσ+ + a†σ−) ,

where a† is the usual harmonic oscillator creation operator, εc is the energy of a cavity
mode photon, εa is the energy difference between the ground (g) and excited (e) states
of the two-state system, and the σ matrices act on the two-state system spanned by
{|g〉, |e〉}.
(a) Show that this Hamiltonian can be block diagonalized in two-state subspaces
spanned by the states |g, n + 1〉, |e, n〉 (where n is the level of the harmonic oscilla-
tor, i.e. the number of cavity photons). Diagonalize this Hamiltonian to obtain an
expression for the splitting between the two energy eigenstates in each block. Show
that this splitting is smallest when the atom and the radiation are in resonance: εa = εc.

For the rest of this problem let εa = εc, so we are at resonance.

(b) Suppose that at time t = 0 the system is in the state |e, n〉. Because this is not an
energy eigenstate, the state will evolve in time. Derive expressions for pg(t) and pe(t)
(the probabilities of finding the atom in its ground and excited states respectively), as
a function of time. Show that these probabilities undergo oscillations with a definite
period.

(c) Suppose that at t = 0 the atom is in the excited state and the cavity is in a
superposition of cavity modes:

∑
pn|n > where p(n) = (1/

√
2πn0) exp((n−n0)2/2n0).

When n0 is large, this is pretty close to a coherent state of excitation of the cavity,
which is as close as we get in quantum mechanics to a classical state of the field.
Derive formal expressions for pe(t) and pg(t). For n0 large, with what period do these
probabilities initially oscillate? On roughly what time scale do these initial oscillations
first dephase?
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2. Squeezing the Harmonic Oscillator

The quantum harmonic oscillator, described by the Hamiltonian H0 = p2

2m
+ 1

2
mω2q2,

with [p, q] = h̄
i
, is used to describe a remarkably diverse set of physical systems. Con-

sider the class of harmonic oscillator ‘squeezed state’ wave functions of the form

ψ(q) = C exp(−αq2/2)

where C is a normalization constant and α is an arbitrary complex number (with
positive real part to ensure that the wave function is normalizable). States of this type
can be prepared from the ground state by turning on a suitable interaction hamiltonian
for the right length of time. It is not in general an energy eigenstate, but it has
interesting and useful properties:

(a) The means of p and q in this state vanish. Calculate their variances and show that
for real α this is a minimum uncertainty state, i.e. a state with (δp)(δq) = h̄/2 (define
(δq)2 = 〈(q − 〈q〉)2〉, and similarly for δp).

(b) This state satisfies the equation

(αq + ip/h̄)ψ(q) = (αq +
∂

∂q
)ψ(q) = 0

Show that the time-evolved state ψt(q) = exp(−iH0t/h̄)ψ(q) satisfies the same equation
with a time-dependent (and in general complex) α(t). One way to do this is to go to
the Heisenberg picture and time-evolve the operators p and q, rather than ψ(q).

(c) You should find that α(t) becomes complex with time, even if α(0) = α is real. So,
in general, at t > 0 the state is no longer minimum uncertainty. Show that there are
later times in the harmonic oscillator period where α(t) becomes real again (and the
state recovers its minimum uncertainty character). Identify these real values of α(t)
and comment on the nature of the minimum uncertainty states that are visited (assume
that α is large, so that the initial minimum uncertainty state has small variance in q
(and large variance in p).
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3. Tritium Beta Decay

The tritium nucleus is radioactive and decays to He3 with the emission of an electron
and an antineutrino (T → He3 + e− + ν̄).

(a) Assuming that the electron in the tritium atom is originally in its ground state,
what is the probability of finding the electron in the resulting He3 ion also in its 1s
ground state immediately after the decay? You can assume that, as far as the electron
is concerned, all that happens is that the nucleus suddenly changes its charge from +1
to +2. The other newly-produced electron is emitted with such high energy that it
effectively leaves the atom immediately.

(b) What are the probabilities of finding the electron in the He3 ion in each of its
three 2p excited states immediately after the decay?

(c) What is the expectation value of the energy of the atomic electron immediately
after the decay (old wave function, new Hamiltonian)?
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Section B. Statistical Mechanics and Thermodynamics

1. Putting Pressure on 3He

Usually it is true that the entropy S of a solid is lower than that of the corresponding
liquid. He3 represents a counter example. Above 0.1 K to a good approximation
liquid He3 may be treated as a Fermi gas so S is proportional to the temperature.
Solid He3 which is stable at higher pressure, may be regarded as a regular lattice of
non-interacting nuclear spins, with a constant nonzero spin entropy down to very low
temperatures. The nuclei have spin 1/2.

DATA:

Sliq = Ssolid at 0.32 K,

Pmelt = 31.0 atm at 0.32 K,

Pmelt = 33.0 atm at 0.72 K.

The volume change on melting is temperature independent at the low temperatures
considered here.

(a) Give an expression for the constant entropy of N atoms of solid He3 in terms of
fundamental constants.

(b) Sketch the phase boundary between liquid and solid He3 in the P − T plane.

(c) Evaluate Pmelt at T = 0 K, assuming the above-described approximations remain
valid there. Give Pmelt to the nearest 0.1 atm. Explain how you obtain this result.
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2. Surface Adsorption

Consider a 3-dimensional gas of spinless, non-relativistic, non-interacting bosons of
mass m at pressure P and temperature T . The pressure of this 3D ideal Bose gas
is low enough so that it is in the classical limit where the quantum statistics of the
bosons may be neglected. The bosons can be adsorbed onto a 2-dimensional surface
layer, where they are bound with energy −ε0 < 0, but retain their translational degrees
of freedom in 2 dimensions. The ideal 3D Bose gas is in equilibrium with the ideal 2D
adsorbed Bose gas. Treating the 2D adsorbed gas fully quantum mechanically with
the proper Bose statistics, compute the surface density of this 2D gas as a function of
the given parameters and fundamental constants.

( You may need:
∫

dx
aex+1

= ln ex

1+aex
.)
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3. Photon Condensate

Consider a cavity that has two low-lying electromagnetic modes, with photon energies
ε0 and ε1 (and energy difference ∆ = ε1− ε0 > 0), that are separated by a large energy
gap from all higher modes such that we can neglect higher mode contributions to any
thermodynamic quantity. The quantum state of this cavity is specified by giving the
numbers N0 and N1 of photons in the two modes.

First, suppose that these two modes exchange energy with a heat bath at temperature
T in such a way that the total number N = N0 + N1 of photons in these two cavity
modes (but not their individual numbers) is conserved. This is an idealization of an
actual experimental setup involving laser optics.

(a) There are N + 1 possible states of the cavity, labeled by the number N1 of photons
in the upper state (N1 = 0, 1, . . . , N). According to Boltzmann statistics, what are the
occupation probabilities p(N1) of these states at bath temperature T?

(b) Your result from (a) simplifies in the limit of large N . Calculate the expectation
value of the number of photons in the upper state in this limit, showing that it remains
finite when ∆ > 0. The remaining photons go into the lower energy mode, which thus
becomes a kind of Bose-Einstein condensate in this large N limit.

Now suppose that instead the system can exchange not only energy with the heat bath,
but also photons, so that the total photon number N is not fixed. We must now use the
grand canonical ensemble, an approach that involves a chemical potential parameter
µ that we adjust to achieve the desired mean photon number. Note that even though
these are photons, allow µ 6= 0 in order to fix 〈N〉.
(c) Show that to have a large mean photon number 〈N〉, we must set µ = ε0 −
kBT/〈N〉 + ...., where the neglected terms (....) are small compared to those shown
explicitly. In the limit of large 〈N〉, does this ensemble have a different limiting value
of 〈N1〉 from what you obtained in this limit in part (b)?

(d) Finally, in the large photon number limit, show that the fluctuations in the total
photon number (and therefore in the photon number of the lower mode) are enormous
in this grand canonical ensemble: 〈(δN)2〉 ∼= 〈N〉2.


