
Part I—Mechanics J03M.1—Scattering from an Attractive Potential

J03M.1—Scattering from an Attractive Potential

Problem

This problem is about scattering by an attractive potential.

a) Consider a particle with energy E and z < 0 approaching the z = 0 plane at an angle θ1 to
the z-axis. Find the angle θ2 that it makes to the z axis after passing through the z = 0 plane
if V = 0 for z < 0 and V = −V0 (constant) for z > 0.

b) Apply your result to a uniform beam of particles scattered by the attractive potential

V (r) = −V0 r < a, V (r) = 0 r > a

Determine the differential cross section. (Recall that the definition of the differential cross
section is dσ

dΩ
= b

sin θ
db
dθ

, where b is the impact parameter and θ the scattering angle.)



Part I—Mechanics J03M.2—Disk with Three Springs

J03M.2—Disk with Three Springs

Problem

A uniform disk of mass m and radius a rests on a horizontal frictionless surface. It is symmetrically
attached to three identical, ideal, massless springs whose other ends are attached to the three
vertices of an equilateral triangle.

m

a

k

k

k

At equilibrium, the length l of the springs is greater than the relaxed length l0. The disk remains
in the initial horizontal plane but is otherwise free to move. (The diagram shows the view looking
down on the plane.) What are the frequencies of the normal modes of small oscillations? What
do the modes look like? Hint: You might identify the normal modes from the symmetries before
calculating the frequencies.



Part I—Mechanics J03M.3—Orbits in a Central Potential

J03M.3—Orbits in a Central Potential

Problem

Consider a particle of mass m moving in a fixed central potential with angular momentum l. The
potential is V (r) = −C/2r2 where r is the distance from the center and C > 0 is a constant. Note
that the potential leads to an attractive central force, F (r) = −C/r3. There are various kinds
of orbits in this potential depending on the particle’s angular momentum and energy. Determine
those values of the parameters which separate the different classes of orbits and give an example,
including a sketch, of each class of orbit. By orbit is meant r as a function of azimuthal angle, φ,
in the plane of the orbit.



Part II—E & M J03E.1—Waves in Aluminum

J03E.1—Waves in Aluminum

Problem

A plane wave at 90 GHz is normally incident on aluminum, a very good conductor, that fills the
space with z > 0 as shown in the figure. Most, but not all, of the field is reflected from the
surface. Aluminum has a magnetic permeability equal to that of free space and a conductivity of
σ = 3.5× 1017 s−1 or 3.5× 107 Ω−1m−1.

z

x

Aluminum

z = 0

a) Assume the wave inside the aluminum has the form

~E = E0 exp(ikx− iωt)êx.

What is the dispersion relation, k(ω), in the aluminum?

b) What fraction of the incident power is reflected?

c) What is the numerical value of the normal emissivity ε? Recall that ε = (the power emit-
ted)/(the power emitted by a perfect radiator at the same temperature).



Part II—E & M J03E.2—Image Charges

J03E.2—Image Charges

Problem

This problem contains three questions on electrostatics.

a) A charge Q is at x = b and a second charge q = −Q
√

a
b

is at x = a. Show that the equipotential
surface corresponding to V = 0 is described by a sphere with its center at the origin. Determine
the radius R of this sphere.

x = a x = b
x

z

q Q

b) FInd the electric potential in cylindrical coordinates φ(r, θ, z) when a charge q is located
at (r0, z0 > 0) and there is a grounded conducting plane at z = 0 that has a conducting
hemispherical boss of radius R < b =

√
r20 + z20 whose center is at the origin. A side view of

the boss and conducting plane is shown in the picture below.

a
b

r

z

c) What is the electrostatic force on the charge q in part b) for the case that r0 = 0?



Part II—E & M J03E.3—Rotating Charged Rod

J03E.3—Rotating Charged Rod

Problem

A rod of length L and negligible cross sectional area carries a total charge Q uniformly distributed
along its length. It is rotated slowly with ω � c/L in the x-y plane as shown.

a) What are the electric dipole moment and rate at which electric dipole energy is radiated?

b) What are the magnetic dipole moment and rate at which magnetic dipole energy is radiated?



Part III—Quantum J03Q.1—Central Potential Scattering

J03Q.1—Central Potential Scattering

Problem

Consider the scattering of quantum-mechanical particles by a spherical square-well in three dimen-
sions given by a radial potential

V (r) =

{
V0 for r < a,

0 otherwise

having a constant depth V0 within a radius a > 0 of the origin. Assume that the particles have an
extremely low low energy E > 0, that is, a

√
2mE � ~. In this case only partial waves of angular

momentum L = 0 suffer appreciable scattering.

a) Calculate the total cross section for the case of an attractive potential with depth V0 < 0.

b) Starting from the answer you derived, consider now the case of scattering from a hard sphere,
by taking the potential to be repulsive (V0 > 0) in the limit V0/E →∞. Show that the answer
is 4πa2 (four times bigger than the classical result).



Part III—Quantum J03Q.2—Hydrogen Atom Transitions

J03Q.2—Hydrogen Atom Transitions

Problem

An isolated hydrogen atom in the 2s level has a very long lifetime for radioactive decay because
selection rules pretty much force it to decay by two-photon emission. In realistic situations, the
atom suffers collisions that push the 2s level into the 2p levels, from which it rapidly decays by
standard electric dipole emission.

In plasmas, the collisions are with ions that briefly subject the hydrogen atom to an electric field.
Let us study what happens when an ion of charge Q, moving at constant velocity v passes by the
H atom, making a closest distance of approach b. The electron in the atom sees a time-dependent
potential

V1(~x, t) =
Qe

|~b+ ~vt− ~x|
~b · ~v = 0.

Because the ion passes far from the atom, you can treat x as small and expand in powers of x. Keep
the term of first order in x and treat it as the perturbing potential that induces transitions between
the degenerate states of the n = 2 levels of hydrogen (the zeroth-order term doesn’t depend on x
and causes no transitions).

Use first-order time-dependent perturbation theory to find the transition amplitude for an atom
originally in the 2s level to wind up in one of the 2p levels.

You will need some hydrogen wave functions:

φ2s =
1

2
√

2πa3B
(1− r/2aB)e−r/2ab

φ2p,0 =
z

4
√

2πa5B
e−r/2ab

φ2p,±1 =
x± iy

8
√

2πa5B
e−r/2ab



Part III—Quantum J03Q.3—Nuclear Alpha Decay

J03Q.3—Nuclear Alpha Decay

Problem

An unpolarized nucleus of spin S = 2 decays into a nucleus of spin 0, plus two alpha particles,
both having spin 0 and orbital angular momentum L = 1. We would like to predict the probability
distribution of the angle between the directions of motion of the outgoing alphas. (Assuming the
original nucleus is unpolarized, there are no other meaningful angles in the problem.)

a) As a first step, use the techniques of angular momentum addition to construct states of total
angular momentum 2 out of two particles of orbital angular momentum 1. Put otherwise, find
the normalized linear combinations of Y1m1(θ1, ϕ1)Y1m2(θ2, ϕ2) that provide a basis of the total
angular momentum 2 representation.

b) Next, compute the probability density p(θ1, ϕ1; θ2, ϕ2) for the joint angular distribution of
both alphas when both θ1 = θ2 = π/2, so both alphas lie in the plane perpendicular to the
Sz-quantization axis. Recall that the original S = 2 nucleus is unpolarized (i.e. has equal
probability of being in the 5 different Sz substates).

c) The density obtained in the preceding part only depends on the angle ω = ϕ1−ϕ2 between the
two particles. Use the fact that even for general θ1,2 and ϕ1,2, the density p will only depend on
the angle ω between the directions of the two alphas to compute the probability distribution
of ω.



Part IV—Stat Mech & Thermo J03T.1—Container of Gases

J03T.1—Container of Gases

Problem

A container is filled with 5 liters of helium gas and 20 liters of argon gas separated by a movable
thin piston. The walls of the container are hollow and are filled with one liter of water. The heat
capacity of the piston and the container walls are negligible. The piston is initially in its rest
position, and the water and the gas are in thermal equilibrium at a temperature of 32°C.

5 liters helium 20 liters argon

Movable Piston

1 liter water

One moves the piston slowly, while maintaining thermal equilibrium, to the point where the pressure
of the argon gas is twice its original value. Then, suddenly, the piston is released. The piston returns
to its rest position and thermal equilibrium is restored. After the entire process the temperature
of the water has increased by exactly 1.0° C. The heat capacity of water is 4.184 kJ/kg·K, and the
gas constant is R = 8.314 J/mole·K.

a) How many moles of helium and argon are inside the container?

Next, the water is removed from the walls and the same process is repeated but now without the
water.

b) What is the pressure of the gas before and after this second process? Express your answer in
units of 1 atmosphere = 1.01× 105 N/m2.

c) Determine the change in entropy during the first process and the second process. Is there a
difference? Explain.



Part IV—Stat Mech & Thermo J03T.2—Krypton Molecule Formation

J03T.2—Krypton Molecule Formation

Problem

Krypton atoms are rather heavy and reasonably polarizable. The potential between two krypton
atoms is shown in the figure

−E0

U(r)

r0

r
∆r0

In the limit in which the mass of the Kr atom is very large, there will at low energies and temper-
atures be an equilibrium of the form

Kr + Kr↔ Kr2

a) The classical partition function of two krypton atoms inside a volume V can be written as

Z2 =

(
1 +

K

V

)
Z id

2

where Z id
2 is the partition sum of two free atoms. How is the constant K related to the

probability that the two atoms form a molecule? Find an approximate expression for K in
terms of the reaction energy E0, the size r0 of the molecule, and the width ∆r0 of the potential.

b) Show that the partition function ZN for N krypton atoms inside a volume V can similarly be
written as a sum of contributions coming from M Kr2 molecules and N − 2m unbound free
Kr atoms given by

ZN,M = d(M,N)

(
K

V

)M
Zid
N

where Z id
N is the ideal gas partition sum, d(M,N) is the number of ways M molecules can

be formed out of N atoms, and K is the same quantity found in part a). Determine the
combinatorial factor d(M,N).

c) Derive the equilibrium condition

cKr2 = K[cKr]
2

where cKr2 is the concentration of the Kr2 molecules and cKr the concentration of the unbound

Kr atoms. You may use Stirling’s formula N ! ∼
(
N
e

)N
.



Part IV—Stat Mech & Thermo J03T.3—Spin Gas in a Magnetic Field

J03T.3—Spin Gas in a Magnetic Field

Problem

Consider an ideal Boltzmann gas of N spin 1
2

particles in a thermally isolated container at initial
temperature Ti in a strong magnetic field H.

a) Compute the free energy and the entropy of the gas.

b) The magnetic field is slowly reduced to H = 0. Compute the final temperature of the gas.
Express your answer in terms of the variable x = µBH/kTi.

c) Show that

Ti > Tf > 2− 2
3Ti.
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