Michael Romalis

Position
Professor of Physics
Office Phone
Assistant
Office
230 Jadwin Hall
Bio/Description

Michael Romalis is professor of physics at Princeton University. He received his B.S. in physics from the Illinois Institute of Technology, in Chicago, and his Ph.D. in physics from Princeton University in 1997. He is interested in applications of atomic physics techniques to fundamental questions about the workings of the Universe as well as to practical applications in other areas of science. His current research interests include atomic magnetometers, nuclear spin co-magnetometers and Rydberg microwave electric field detectors. In addition to practical applications, these quantum sensors are used to search for violations of Lorentz invariance, new spin-dependent forces and possible coherent dark matter signals. He was made a Fellow of the American Physical Society in 2012 and received the Francis Pipkin Award in 2010. 

 

Selected Publications
  • M. Smiciklas, J.M. Brown, L.W. Cheuk, S.J. Smullin, M.V. Romalis, New test of local lorentz invariance using a 21Ne-Rb-K co-magnetometer, Phys. Rev. Lett. 107 , 171604 (2011). 
  • G. Vasilakis, V. Shah, M.V. Romalis, Stroboscopic back-action evasion in a dense alkali-metal vapor, Phys. Rev. Lett. 106, 143601 (2011).
  • H. B. Dang, A. C. Maloof, M. V. Romalis,  Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer, Appl. Phys. Lett. 97, 151110, (2010).  
  • S. Ikäläinen, M. V. Romalis, P. Lantto, and J. Vaara, Chemical Distinction by Nuclear Spin Optical Rotation, Phys. Rev. Lett. 105, 153001 (2010). 
  • G. Vasilakis, J. M. Brown, T. W. Kornack and M. V. Romalis, Limits on New Long Range Nuclear Spin-Dependent Forces Set with a K-3He Co-magnetometer, Phys. Rev. Lett. 103, 261801, (2009).
  • W.C. Griffith, M.D. Swallows, T.H. Loftus, M.V. Romalis, B.R. Heckel and E.N. Fortson, Improved Limit on the Permanent Electric Dipole Moment of Hg-199, Phys. Rev. Lett. 102, 101601 (2009).
  • D. Budker and M. V. Romalis, Optical magnetometry (review), Nature Physics 3, 227 (2007).
  • H. Xia, A. Ben-Amar Baranga, D. Hoffman, and M. V. Romalis, Magnetoencephalography with an atomic magnetometer, Appl. Phys. Lett. 89, 211104 (2006). 
  • I.M. Savukov, S.-K. Lee and M.V. Romalis, Optical detection of liquid-state NMR, Nature 442, 1021 (2006).
  • W. Kornack, R. K. Ghosh and M. V. Romalis, Nuclear spin gyroscope based on an atomic co-magnetometer, Phys. Rev. Lett. 95, 230801 (2005).
  • M. P. Ledbetter, I. M. Savukov, M. V. Romalis, Non-linear amplification of small spin precession using long range dipolar interactions, Phys. Rev. Lett. 94, 060801 (2005).
  • M. Pospelov and M. Romalis, Lorentz invariance on trial, Physics Today 57, 40, (2004). 
  • J. J. Heckman, M. P. Ledbetter, and M. V. Romalis, Enhancement of SQUID-Detected NMR Signals with Hyperpolarized Liquid 129Xe in a 1 mT Magnetic Field, Phys. Rev. Lett. 91, 067601 (2003).
  • I. K. Kominis, T. W. Kornack, J. C. Allred and M. V. Romalis, A Sub-femtotesla multi-channel atomic magnetometer, Nature, 422, 596 (2003). 
  • J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation, Phys. Rev. Lett. 89, 130801 (2002).