Ali Yazdani

Professor of Physics
Office Phone
384 Jadwin Hall

Class of 1909 Professor of Physics.
Director, Princeton Center for Complex Materials (PCCM)

Research Program: Harnessing the power of quantum microscopy techniques

A goal at the forefront of condensed matter physics is understanding how quantum phases of matter emerge from interactions among electrons or from topological properties of electronic states. These quantum phases can have novel electronic properties and host unusual quasiparticles, the control and manipulation of which may lead to new quantum technologies.

Our group's focus is to harness the power of high-resolution scanning quantum microscopy techniques to understand such novel phases of matter. These studies have provided information that is impossible to obtain using conventional macroscopic averaging techniques typically used in condensed matter physics. For example, scanning tunneling microscopy (STM) techniques can directly visualize electronic wavefunctions in quantum materials, allowing us to understand the nature of new quantum phases and their excitations.

Our group not only applies well established techniques of quantum microscopy across a wide range of material platforms, but we also develop new microscopy methods and tools.

Recent Publications

  1. B. Jäck, Y. Xie and A. Yazdani, "Detecting and distinguishing Majorana zero modes with the scanning tunneling microscope," arXiv:2103.13210 [cond-mat.mes-hall] (to appear in Nature Reviews Physics).
  2. H. Ding, Y. Hu, M. T. Randeria, S. Hoffman, O. Deb, J. Klinovaja, D. Loss and A. Yazdani "Tuning interactions between spins in a superconductor," PNAS 118 (14) e2024837118 (2021). DOI: 10.1073/pnas.2024837118
  3. A. Yazdani, “Magic, symmetry, and twisted matter,” Science 371, no. 6534, 1098-1099 (2021). DOI: 10.1126/science.abg5641
  4. E. Y. Andrei, D. K. Efetov, P Jarillo-Herrero, A. H. MacDonald, K. F. Mak, T. Senthil, E. Tutuc, A. Yazdani and A. F. Young, “The marvels of moiré materials,” Nat Rev Mater 6, 201-206 (Viewpoint) (2021). DOI: 10.1038/s41578-021-00284-1
  5. B. Lian, Z.-D. Song, N. Regnault, D. K. Efetov, A. Yazdani, and B. A. Bernevig, "Twisted bilayer graphene. IV. Exact insulator ground states and phase diagram," Phys. Rev. B 103, 205414 (2021). DOI: 10.1103/PhysRevB.103.205414  (arXiv:2009.13530)
  6. X. Liu, C.-L. Chiu, J. Y. Lee, G. Farahi, K. Watanabe, T. Taniguchi, A. Vishwanath, and A. Yazdani, “Spectroscopy of a tunable moiré system with a correlated and topological flat band,” Nature Communications 12, 2732 (2021) DOI: 10.1038/s41467-021-23031-0.  (arXiv:2008.07552).
  7. * K. P. Nuckolls, M. Oh, D. Wong, B. Lian, K. Watanabe, T. Taniguchi, B. A. Bernevig and A. Yazdani, “Strongly correlated Chern insulators in magic-angle twisted bi-layer graphene,” Nature, 588, 610-615 (2020). DOI: 10.1038/s41586-020-3028-8
  8. Y. Jia, P. Wang, C.-L. Chiu, Z. Song, G. Yu, B. Jäck, S. Lei, S. Klemenz, F. A. Cevallos, M. Onyszczak, N. Fishchenko, X. Liu, G. Farahi, F. Xie, Y. Xu, K. Watanabe, T. Taniguchi, B. A. Bernevig, R. J. Cava, L. M. Schoop, A. Yazdani and S. Wu, “Evidence for a monolayer excitonic insulator," arXiv:2010.05390 (2020).
  9. * D. WongK. P. NuckollsM. OhB. LianY. XieS. JeonK. WatanabeT. TaniguchiB. A. Bernevig and A. Yazdani, “Cascade of  electronic transitions in magic-angle twisted bilayer graphene,” Nature 582, 198-202 (2020). DOI: 10.1038/s41586-020-2339-0; arXiv:1912.06145
  10. * B. Jäck, Y. Xie, B. A. Bernevig, and A. Yazdani, “Observation of backscattering induced by magnetism in a topological edge state,” Proceedings of the National Academy of Sciences 117, 16214 (2020) DOI: 10.1073/pnas.2005071117
  11. D. Wong, S. Jeon, K. P. Nuckolls, M. Oh, S. C. J. Kingsley and A. Yazdani, “A modular ultra-high vacuum millikelvin scanning tunneling microscope,” Review of Scientific Instruments 91, 023703 (2020). DOI: 10.1063/1.5132872
  12. S. Lei, J. Lin, Y. Jia, M. Gray, A. Topp, G. Farahi, S. Klemenz, T. Gao, F. Rodolakis, J. L. McChesney, C. R. Ast, A. Yazdani, K. S. Burch, S. Wu, N. P. Ong and L. M. Schoop, “High mobility in a van der Waals layered antiferromagnetic metal,” Science Advances 07, 6, (2020). DOI: 10.1126/sciadv.aay6407