Ali Yazdani


Ali Yazdani is the James S. McDonnell Distinguished University Professor of Physics at Princeton University, Co-director, Princeton Quantum Initiative, and Director of the Princeton Center for Complex Materials (PCCM), an NSF-funded center for materials research in science and engineering. Yazdani_CV

Yazdani is known for his research in advancing our understanding of emergent quantum phenomena by application and development of high-resolution microscopy techniques to directly visualize highly entangled quantum states of matter.

He graduated from UC Berkeley with a degree in physics and from Stanford University in 1995 with a Ph.D. in applied physics. After working as a postdoctoral scientist at IBM, he started his own independent research group at the University of Illinois in Urbana-Champaign before joining Princeton University's Physics Department in 2005. He has held visiting professorships at Stanford and at Cambridge University (Trinity College) in the UK and has been a Loeb Lecturer at Harvard.

For his research accomplishments, he has been recognized by several awards and honors including a Humboldt research award and was elected a fellow of American Physical Society, American Association for Advancement of Science, and American Academy of Arts and Sciences. In 2019, he was elected a member of the National Academy of Sciences and the APS awarded him the 2023 Oliver E. Buckley Condensed Matter Physics Prize, which recognizes outstanding theoretical or experimental contributions to condensed matter physics. He has advised more 30 graduate students and postdoctoral fellows.

Yazdani Lab Research Program: Harnessing the power of quantum microscopy techniques

A goal at the forefront of condensed matter physics is understanding how quantum phases of matter emerge from interactions among electrons or from topological properties of electronic states. These quantum phases can have novel electronic properties and host unusual quasiparticles, the control and manipulation of which may lead to new quantum technologies.

Our group's focus is to harness the power of high-resolution scanning quantum microscopy techniques to understand such novel phases of matter. These studies have provided information that is impossible to obtain using conventional macroscopic averaging techniques typically used in condensed matter physics. For example, scanning tunneling microscopy (STM) techniques can directly visualize electronic wavefunctions in quantum materials, allowing us to understand the nature of new quantum phases and their excitations.

Our group not only applies well established techniques of quantum microscopy across a wide range of material platforms, but we also develop new microscopy methods and tools.

Recent Publications

  1. D. Wong, K. P. Nuckolls, M. Oh, R. L. Lee, K. Watanabe, T. Taniguchi, and A. Yazdani, "Insulators at fractional fillings in twisted bilayer graphene partially aligned to hexagonal boron nitride," arXiv preprint arXiv:2303.08246 (2023).
  2. C. Chen, K. P. Nuckolls, S. Ding, W. Miao, D. Wong, M. Oh, R. L. Lee, S. He, C. Peng, D. Pei, Y. Li, S. Zhang, J. Liu, Z. Liu, C. Jozwiak, A. Bostwick, E. Rotenberg, C. Li, X. Han, D. Pan, X. Dai, C. Liu, B. A. Bernevig, Y. Wang, A. Yazdani, and Y. Chen, "Strong inter-valley electron-phonon coupling in magic-angle twisted bilayer graphene," arXiv preprint arXiv:2303.14903 (2023).
  3. K. P. Nuckolls, R. L. Lee, M. Oh, D. Wong, T. Soejima, J. Pyo Hong, D. Călugăru, J. Her-zog-Arbeitman, B. A. Bernevig, K. Watanabe, T. Taniguchi, N. Regnault, M. P. Zaletel, and A. Yazdani, "Quantum textures of the many-body wavefunctions in magic-angle graphene," arXiv preprint arXiv:2303.00024 (2023).
  4. Y. Jia, P. Wang, C.-L. Chiu, Z. Song, G. Yu, B. Jäck, S. Lei, S. Klemenz, F. A. Cevallos, M. Onyszczak, N. Fishchenko, X. Liu, G. Farahi, F. Xie, Y. Xu, K. Watanabe, T. Taniguchi, B. A. Bernevig, R. J. Cava, L. M. Schoop, A. Yazdani and S. Wu, “Evidence for a monolayer excitonic insulator," Nat. Phys. 18, 87-93 (2022). DOI: 10.1038/s41567-021-01422-w 
  5. N. Regnault, Y. Xu, M.-R. Li, D.-S. Ma, M. Jovanovic, A. Yazdani, S. S. P. Parkin, C. Felser, L. M. Schoop, N. P. Ong, R. J. Cava, L. Elcoro, Z.-D. Song, B. A. Bernevig, “Catalogue of flat band stoichiometric materials,” Nature 603, 824-828 (2022). DOI: 10.1038/s41586-022-04519-1 
  6. D. Călugăru, N. Regnault, M. Oh, K. P. Nuckolls, D. Wong, R. L. Lee, A. Yazdani, O. Vafek, and B. A. Bernevig, “Spectroscopy of twisted bilayer graphene correlated insulators,” Phys. Rev. Lett. 129, 117602 (2022). DOI: 10.1103/PhysRevLett.129.117602
  7. * X. Liu, G. Farahi, C.-L. Chiu, Z. Papic, K. Watanabe, T. Taniguchi, M. P. Zaletel and A. Yazdani, "Visualizing broken symmetry and topological defects in a quantum Hall ferromagnet," Science 375, 6578, pp. 321-326 (2021). DOI: 10.1126/science.abm3770
  8. * M. Oh, K. P. Nuckolls, D. Wong, R. L. Lee, X. Liu, K. Watanabe, T. Taniguchi and A. * Yazdani, "Evidence for unconventional superconductivity in twisted bilayer graphene," Nature 600, 240-245 (2021). DOI: 10.1038/s41586-021-04121-x
  9. B. Jäck, Y. Xie and A. Yazdani, "Detecting and distinguishing Majorana zero modes with the scanning tunneling microscope," Nat Rev Phy 3, issue 8 (2021). DOI: 10.1038/s42254-021-00328-z
  10. H. Ding, Y. Hu, M. T. Randeria, S. Hoffman, O. Deb, J. Klinovaja, D. Loss and A. Yazdani "Tuning interactions between spins in a superconductor," PNAS 118 (14) e2024837118 (2021). DOI: 10.1073/pnas.2024837118
  11. A. Yazdani, “Magic, symmetry, and twisted matter,” Science 371, no. 6534, 1098-1099 (2021). DOI: 10.1126/science.abg5641
  12. E. Y. Andrei, D. K. Efetov, P Jarillo-Herrero, A. H. MacDonald, K. F. Mak, T. Senthil, E. Tutuc, A. Yazdani and A. F. Young, “The marvels of moiré materials,” Nat Rev Mater 6, 201-206 (Viewpoint) (2021). DOI: 10.1038/s41578-021-00284-1
  13. B. Lian, Z.-D. Song, N. Regnault, D. K. Efetov, A. Yazdani, and B. A. Bernevig, "Twisted bilayer graphene. IV. Exact insulator ground states and phase diagram," Phys. Rev. B 103, 205414 (2021). DOI: 10.1103/PhysRevB.103.205414 
  14. X. Liu, C.-L. Chiu, J. Y. Lee, G. Farahi, K. Watanabe, T. Taniguchi, A. Vishwanath, and A. Yazdani, “Spectroscopy of a tunable moiré system with a correlated and topological flat band,” Nature Communications 12, 2732 (2021) DOI: 10.1038/s41467-021-23031-0.
  15. * K. P. Nuckolls, M. Oh, D. Wong, B. Lian, K. Watanabe, T. Taniguchi, B. A. Bernevig and A. Yazdani, “Strongly correlated Chern insulators in magic-angle twisted bi-layer graphene,” Nature 588, 610-615 (2020). DOI: 10.1038/s41586-020-3028-8
  16. * D. WongK. P. NuckollsM. OhB. LianY. XieS. JeonK. WatanabeT. TaniguchiB. A. Bernevig and A. Yazdani, “Cascade of  electronic transitions in magic-angle twisted bilayer graphene,” Nature 582, 198-202 (2020). DOI: 10.1038/s41586-020-2339-0
  17. * B. Jäck, Y. Xie, B. A. Bernevig, and A. Yazdani, “Observation of backscattering induced by magnetism in a topological edge state,” PNAS 117, 16214 (2020) DOI: 10.1073/pnas.2005071117
  18. D. Wong, S. Jeon, K. P. Nuckolls, M. Oh, S. C. J. Kingsley and A. Yazdani, “A modular ultra-high vacuum millikelvin scanning tunneling microscope,” Review of Scientific Instruments 91, 023703 (2020). DOI: 10.1063/1.5132872
  19. S. Lei, J. Lin, Y. Jia, M. Gray, A. Topp, G. Farahi, S. Klemenz, T. Gao, F. Rodolakis, J. L. McChesney, C. R. Ast, A. Yazdani, K. S. Burch, S. Wu, N. P. Ong and L. M. Schoop, “High mobility in a van der Waals layered antiferromagnetic metal,” Science Advances 07, 6, (2020). DOI: 10.1126/sciadv.aay6407