Fri, Apr 29, 2016, 1:45 pm to 3:00 pm

Location:

Bloomberg Lecture Hall - Institute for Advanced Study

One can easily be frustrated by the tremendous redundancy in possible physical description. By this I mean the freedom to choose gauge, make field redefinitions, add any amount of auxiliary spectator matter, and the such. Happily we can exploit such freedom to encourage the emergence of a new duality in gauge theories. The existence of a duality between color and kinematics exposes a hidden local double-copy structure inherent to prediction in many theories. This structure weaves its way between theories both formal and phenomenological, from QCD to Gravity, from Chiral Perturbation Theory to Born-Infeld, and from open to closed superstring theories. The duality is sharpest at the level of the perturbative S-matrix — so I will focus my talk there, although I will also mention some recent provocative work beyond scattering. I will mainly discuss challenges to generically achieving color-dual kinematic representations at the multi-loop level. I present a path forward that introduces, at least temporarily, a redundancy of description that we can exploit to map a set of functional relations to linear ones. I will talk about this approach in terms of a geometric picture involving the graph of local graphs, discussing tradeoffs and applicability to long-standing problems.