Dr. Benjamin Lev - Exploring Strongly Correlated Matter with Exotic Atoms, Atom Chips, and Cavity QED

Tue, Feb 1, 2011, 1:30 pm to 3:00 pm
Jadwin 303
Advances in the quantum manipulation of ultracold atomic gases are opening a new frontier in the quest to better understand strongly correlated matter. By exploiting the long-range and anisotropic character of the dipole-dipole interaction, we hope to create novel forms of quantum mesophases, states of quantum soft matter intermediate between canonical states of order and disorder. Our group recently laser cooled and trapped the most magnetic atom, dysprosium, which should allow investigations of quantum liquid crystals, mesophases thought to exist in, e.g., hi Tc cuprate superconductors. In addition, Dy will form the key ingredient in hybrid quantum circuts as well as in novel scanning probes using atom chips, substrates supporting micron-sized current-carrying wires that create magnetic microtraps near surfaces. We are developing a cryogenic atom chip miscroscope that will possess unsurpassed sensitivity and resolution for the imaging of condensed matter materials exhibiting exotic transport and magnetism. Finally, we will present recent theoretical work suggesting an additional route to explore quantum mesophases. We propose that quantum glasses arising from quenched disorder in fully emergent supersolids may be observable with atomic BECs in multimode optical cavities.