Liquid crystal elastomers are rubbery solids with liquid crystal mesogens incorporated into their polymer chains. These solids combine the entropic elasticity of rubber with the orientational phase transitions of liquid crystals. The deformation and orientational order are coupled, giving rise to a rich variety of phenomena…

The use of different perspectives on a problem is a very powerful principle in statistical physics, and has been especially important in mathematical physics. I will illustrate this theme with old and recent applications. These include the interpretation of QFTs at imaginary time as statistical fields, the relation of statistical fields to…

The bootstrap program leverages symmetry and positivity to carve out the space of consistent quantum theories. In this talk I will highlight some of its recent successes, ranging from the numerical solution of statistical models at criticality to universal constraints on quantum gravity.

Recording of Talk:…

Finding unconventional superconductors in proximity to various strongly correlated electronic phases has been a recurring theme in materials as diverse as heavy fermion compounds, cuprates, pnictides, and twisted bilayer graphene. The recent discovery of superconductivity in layered nickelates1 was motivated by looking for an analog of the…

There has been exciting recent progress in the study of the quantum nature of black holes through the use of certain exactly solvable models. This work shows how to realize, in concrete terms, various long-held expectations about quantum gravity, such as the transition from describing physics in terms of smooth spacetimes to a description in…

Cosmologists are proud of the standard cosmological model that has been developed to account for a wealth of disparate features of the Universe. The model requires, though, that we postulate the existence of some collisionless dark matter and also dark energy, a negative-pressure substance. The nature of both of these dark constituents is a…

The study of hyperuniform states of matter is an emerging multidisciplinary field, influencing and linking developments across the physical sciences, mathematics and biology. The hyperuniformity concept generalizes the traditional notion of long-range order to include not only all crystals and quasicrystals,…

The black hole information paradox — whether information escapes an evaporating black hole or not — remains one of the greatest unsolved mysteries of theoretical physics. The apparent conflict between validity of semiclassical gravity at low energies and unitarity of quantum mechanics has long been expected…

Remarkable experimental advances enabled creation of highly tunable and controllable quantum systems of ultracold atoms, trapped ions, and superconducting quantum bits. These platforms proved to be uniquely suited for probing non-equilibrium properties of interacting quantum systems. Based on the intuition…

I will review the state of the field of gravitational wave astrophysics, framing the challenges, current observations, and future prospects within the context of the predictions of Einstein's theory of general relativity.

Recording of Prof. Pretorius' Talk: http:/…

## By Year

## By Category

- Astroparticle Seminar
- Atomic Physics Seminar
- Biophysics Seminar
- Condensed Matter Seminar
- Dark Cosmo Seminar
- Distinguished Lecture Series
- Donald R. Hamilton Colloquium
- Donald R. Hamilton Lecture
- Equity Diversity and Inclusion Initiative
- FPO
- Gravity Group Seminar
- Gravity Initiative Seminar
- High Energy Experiment Seminar
- High Energy Theory Seminar
- Mathematical Physics Seminar
- Particle Physics Seminar
- PCTS Seminar
- Phenomenology Seminar
- Princeton Quantum Colloquium
- Quantum Initiative
- Special Event
- Special Seminar
- Statistical Mechanics Seminar