In solid materials, electrons are usually described by the non-relativistic Schrodinger equation since electron velocity is much slower than the speed of light. However, the relativistic Dirac/Weyl equation can emerge as a low-energy effective theory for electrons in certain materials. These systems are…

Ultracold atoms offer a unique platform to perform quantum simulations of quantum materials and many-body systems. When atoms with spin are arranged in an optical lattice in form of a Mott insulator, they realize paradigmatic Heisenberg spin models, where only neighboring spins interact. Until very recently, all experimental studies with cold…

Quantum processors of today are already capable of surpassing classical supercomputers on certain specialized tasks [1]. A current milestone for the quantum information science community is the fulfilment of…

I will present an overview of the current theoretical understanding of the remarkable phenomenology of the twisted bilayer graphene (TBG) near the magic angle. This includes the early insights obtained using the 2D exponentially localized Wannier basis[1] which revealed a qualitative difference between the effect of the…

We study the entanglement dynamics of quantum many-body systems at long times.

For upper bounds, we prove the following: (I) For any geometrically local Hamiltonian on a lattice, starting from a random product state the entanglement entropy almost never approaches the Page curve. (II) In a spin-glass model with random all-to-all…

Duality transformations have played a major role in our modern understanding of quantum phenomena. In 3 spacetime dimensions, familiar examples of duality transformations include 1) Goldstone modes of the XY model being dual to a photon, and 2) dualities involving statistical transmutation. It has become clear recently that both of these…

I will describe experiments probing magnetic states based on the spontaneous alignment of electron orbitals. Such orbital ferromagnetism may be a generic phenomena, but has, to date, found its fullest expression in graphene heterostructures in which the two dimensional orbits of electrons in distinct momentum space valleys provide the…

I will discuss recent theoretical work on exciton physics in two-dimensional materials. First, I will focus on the neutral particle-hole pair excitations of correlated “orbital Chern insulators” recently detected in twisted bilayer graphene, whose approximately flat conduction and valence bands have equal and opposite non-zero Chern number…

In this seminar I will discuss recent progress on the use of planar crystals with hundreds of ions as a platform for quantum simulation of spin and spin-boson models. The key idea is the use of a pair of lasers to couple two internal levels of the ions, that act as a spin½ degree of freedom, to the…

TBA

The interplay between symmetry and topology allows a rich variety of electronic phases. For layered systems, symmetry under translation by one layer protects the 3D weak topological insulator, which can be viewed as a stack of 2D topological insulators and the 2D 'weak topological superconductor', which is a stack of 1D topological…

What can we learn about a many-body system when we measure every constituent particle? Current experiments with ultracold atoms provide snapshots of many-body states with single particle resolution. I will present a recent application of this method to study magnetic polarons in antiferromagnetic Mott insulators. In…

## By Year

## By Category

- Astroparticle Seminar
- Atomic Physics Seminar
- Biophysics Seminar
- Condensed Matter Seminar
- Dark Cosmo Seminar
- Distinguished Lecture Series
- Donald R. Hamilton Colloquium
- Donald R. Hamilton Lecture
- Equity Diversity and Inclusion Initiative
- FPO
- Gravity Group Seminar
- Gravity Initiative Seminar
- High Energy Experiment Seminar
- High Energy Theory Seminar
- Mathematical Physics Seminar
- Particle Physics Seminar
- PCTS Seminar
- Phenomenology Seminar
- Princeton Quantum Colloquium
- Quantum Initiative
- Special Event
- Special Seminar
- Statistical Mechanics Seminar