String theory landscape of vacua point to new consistency conditions that a quantum gravitational system must satisfy. There are only a small number of quantum field theories that satisfy these conditions and all the rest belong to the `Swampland' which cannot be consistently coupled to gravity. In this talk I review some of these conditions…

Panel discussion with Duncan Haldane (Princeton), Michael Manfra (Purdue) and Gwendal Feve (ENS)

The possibility of particles with fractional statistics intermediate between those of fermions and bosons in two dimensional systems was raised as early as 1976 in theoretical work by…

The power of quantum information lies in its capacity to be non-local, encoded in correlations among two, three, or many entangled particles. Yet our ability to produce, understand, and exploit such correlations is hampered by the fact that the interactions between particles and ordinarily local. I will report on…

Neutron stars are by far the strongest known magnets in the universe. Some of them (called magnetars) generate explosions by suddenly dissipating magnetic energy with a rate up to $10^{47}$ erg/s. These magnetic explosions emit giant gamma-ray flares observed in our and neighboring galaxies. Similar explosions in…

**Panel Discussion with Suvi Gezari, Brian Metzger and Marta Volonteri**

This panel discussion accompanies the conference “Exploring Supermassive Black Holes”. We (Suvi Gezari, Jenny Greene, Brian Metzger, Marta Volonteri) will discuss the critical stages in the life…

DNA of the human genome is 2 meters long and is folded into chromosomes that fit in a 10-micron cellular nucleus. I will discuss physical principles that govern folding of long DNA molecules, including phase separation, topological effects in polymer systems, and non-equilibrium phenomena. Recent studies have shown…

The AdS/CFT correspondence maps correlators of local operators in a conformal field theory to scattering amplitudes in a gravitational/string theory on curved space-time. The study of such amplitudes is incredibly hard and has mostly been done in a certain classical limit. We show how modern analytic bootstrap techniques allow us to go much…

Cells in our body move in groups during development, wound healing, and tumor spreading. Bacterial cells also coordinate their motion to aggregate into biofilms, to feed cooperatively, and to form fruiting bodies. All these collective movements rely on physical mechanisms involving cell-generated propulsion forces and both mechanical and…

## By Year

## By Category

- Astroparticle Seminar
- Atomic Physics Seminar
- Biophysics Seminar
- Condensed Matter Seminar
- Dark Cosmo Seminar
- Distinguished Lecture Series
- Donald R. Hamilton Colloquium
- Donald R. Hamilton Lecture
- Equity Diversity and Inclusion Initiative
- FPO
- Gravity Group Seminar
- Gravity Initiative Seminar
- High Energy Experiment Seminar
- High Energy Theory Seminar
- Mathematical Physics Seminar
- Particle Physics Seminar
- PCTS Seminar
- Phenomenology Seminar
- Princeton Quantum Colloquium
- Quantum Initiative
- Special Event
- Special Seminar
- Statistical Mechanics Seminar