Topology and correlation, fundamental ingredients that often dictate the ground states of quantum matter, leave distinct local electronic fingerprints that can be detected with scanning tunneling microscopy (STM). In this dissertation, we first introduce a unique spin signature of Majorana zero mode (MZM) in atomic chains and present how we…
The recent development of fermionic quantum gas microscopes has enabled studies of cold atom Fermi-Hubbard systems with single-site resolution, revealing a variety of interesting phenomena in regimes which are difficult to access with existing theory techniques. The Fermi-Hubbard model is of great intrinsic interest as a toy model for strongly…
Abstract
Topological phases of matter have established a new paradigm in physics, bringing quantum phenomena to the macroscopic scale and hosting exotic emergent quasiparticles. In this thesis, I demonstrate with my collaborators the first Weyl semimetal, TaAs, using angle-resolved photoemission spectroscopy (ARPES),…
Water is one of the most common substances in the universe and is found in many different phases. At extremely high temperature and pressure, water ice forms a superionic phase (SI) in which the water molecules dissociate into ions, with the oxygen ions forming a crystal lattice structure and the hydrogen ions flowing through the lattice like a…
By Category
- Astroparticle Seminar
- Atomic Physics Seminar
- Biophysics Seminar
- Condensed Matter Seminar
- Dark Cosmo Seminar
- Distinguished Lecture Series
- Donald R. Hamilton Colloquium
- Donald R. Hamilton Lecture
- Equity Diversity and Inclusion Initiative
- FPO
- Gravity Group Seminar
- Gravity Initiative Seminar
- High Energy Experiment Seminar
- High Energy Theory Seminar
- Mathematical Physics Seminar
- Particle Physics Seminar
- PCTS Seminar
- Phenomenology Seminar
- Princeton Quantum Colloquium
- Quantum Initiative
- Special Event
- Special Seminar
- Statistical Mechanics Seminar