A remarkable recent development is the discovery of correlated electronic states in twisted bilayer graphene and other moire graphene systems. In this talk I will discuss aspects of the theory of these systems. I will show that both strong correlations and band topology are features of many graphene moire lattices. I will…

In this talk, we address two points connecting holographic toy models and fracton states of matter. First, we show that there is a unified picture behind different holographic toy models based on tensor-networks, bit threads, and fracton model: a web of bit threads on a hyperbolic lattice. They all capture some coarse features of the…

I discuss the interplay between non-Fermi liquid behaviour and superconductivity near a quantum-critical point (QCP) in a metal. The tendencies towards superconductivity and non-Fermi liquid behaviour compete: fermionic incoherence destroys the Cooper logarithm, while superconductivity eliminates scattering at low…

The dynamics and spread of quantum information in complex many-body systems is presently attracting

a lot of attention across various fields, ranging from cold atom physics via condensed quantum matter

to high energy physics and quantum gravity. This includes questions of how a quantum system thermalizes

and phenomena like…

The AdS/CFT correspondence conjectures a duality between a theory of quantum gravity in Anti de Sitter space and a conformal field theory. Susskind identified an interesting paradox in this correspondence: namely some aspects of the behavior of eternal black holes, which partition space-time into two distinct regions connected by a “wormhole”…

Fractional quantum Hall (FQH) states are topologically ordered. Additionally, FQH states support a collective neutral excitation known as the Girvin-MacDonald-Platzman (GMP) mode. Certain features of this mode are independent of the microscopic details. The objective of the talk is to construct an effective theory includes both topological…

Abstract: We present recent advances in our understanding of (i) exotic quantum phases of matter in three dimensions, and (ii) robust mechanisms for storing and processing quantum information, that have been enabled by new techniques to study highly-entangled quantum states. First, we introduce new kinds of gapped quantum phases in three…

When the twist angle of a bilayer graphene is commensurate and near the `magic' value, there are four narrow bands near the neutrality point, each two-fold spin degenerate. These bands are separated from the rest of the bands by energy gaps.

In the first part of the talk, the method for microscopic construction of symmetry adapted…

Superconducting circuits have emerged as a competitive platform for quantum computation, satisfying the challenges of controllability, long coherence and strong interactions. Here we apply this toolbox to a different problem: the exploration of strongly correlated quantum materials made of microwave photons. We develop a versatile recipe that…

## By Year

## By Category

- Astroparticle Seminar
- Atomic Physics Seminar
- Biophysics Seminar
- Condensed Matter Seminar
- Dark Cosmo Seminar
- Distinguished Lecture Series
- Donald R. Hamilton Colloquium
- Donald R. Hamilton Lecture
- Equity Diversity and Inclusion Initiative
- FPO
- Gravity Group Seminar
- Gravity Initiative Seminar
- High Energy Experiment Seminar
- High Energy Theory Seminar
- Mathematical Physics Seminar
- Particle Physics Seminar
- PCTS Seminar
- Phenomenology Seminar
- Princeton Quantum Colloquium
- Quantum Initiative
- Special Event
- Special Seminar
- Statistical Mechanics Seminar