We will discuss two recent developments in black hole perturbation theory:

(1) the symmetries behind the well-known vanishing of the tidal Love numbers, and

(2) second order quasi-normal modes during the ring-down phase after a binary merger.

Volume or 3D electron microscopy EM continues to expand its potential for imaging ever larger biological entities. Images from diamond knife cut sections launched the field of volume EM. An alternative of imaging the sequentially cut block face offered easier use and registration. FIB-SEM or Focused Ion Beam Scanning Electron Microscopy…

Black holes are expected to exhibit universal 'random matrix' behavior at late times, indicative of quantum chaos. The approach to a late-time plateau in the spectral form factor (SFF) is a probe of this behavior. In this talk we study the SFF in double-scaled matrix integrals, dual to two-dimensional black…

Abstract: TBA

I will discuss the problem of unreasonable effectiveness of random matrix theory for description of spectral fluctuations in extended quantum lattice systems. A class of locally interacting spin systems has been recently identified where the spectral form factor is proven to…

When Kerr black holes rotate at their maximally allowed angular velocity, they are said to be extremal. Extremal black holes are critical solutions to Einstein’s equations of general relativity. They exhibit several interesting phenomena that are not present in more slowly rotating black holes. I will introduce recent work on the existence of…

Cell migration is a critical process underlying proper tissue maintenance. While a soft nucleus allows a cell to squeeze through small pores, the resulting physical stress can lead to nuclear damage and genomic variability. We have shown that the cytoskeletal intermediate filament protein vimentin protects against DNA damage during migration…

In this talk, I will describe recent progress on moduli stabilization in string theory. In particular, I will describe recently found supersymmetric AdS_4 vacua, with exponential scale separation, of type IIB string compactifications on O3/O7 orientifolds of Calabi-Yau threefolds.

Liouville quantum gravity (LQG) is a theory of random surfaces that originated from string theory. Schramm Loewner evolution (SLE) is a family of random planar curves describing scaling limits of many 2D lattice models at their criticality. Before the rigorous study via LQG and SLE in …

Heavy-ion collision experiments have provided overwhelming evidence that quarks and gluons can flow as a nearly frictionless, strongly interacting relativistic fluid over distance scales not much larger than the size of a proton. On the other hand, with the dawn of the multi-messenger astronomy era marked by the detection of a binary neutron…

Abstract: Black holes have not just become laboratories for astronomers, but also present some of the deepest unsolved problems in theoretical physics. During the past decade scientists learned that concepts from quantum information play a key role in understanding fundamental problems in gravity. In this talk I will explain some recent…

Holography relates quantum many-body systems to gravitational theories. Quantum entanglement plays a key role to explain how the spacetime geometries in gravity emerge from quantum systems. A new class of holography can be found by introducing so called end-of-the-world branes and has been actively studied recently. Such holographic models…

While the experimental program to detect ever lighter dark matter is proceeding full steam ahead, the theory of such light, detectable dark matter is at a crossroads. I will detail two examples of sub-GeV hadrophilic dark matter models which these future direct detection endeavors may discover while highlighting the serious challenges model…

In the gauge/string duality, Wilson loop operators are dual to

open string minimal surfaces anchored on the loop at the boundary of AdS.

In the simplest example, a circular Wilson loop corresponds

to an open string worldsheet with AdS2 geometry. The scattering amplitudes

of the worldsheet fluctuations are…

In this talk, I’ll survey some of the major open questions in particle physics and make the case that they can best be addressed by a qualitatively new type of particle accelerator: a high-energy muon collider. Recent progress on long-standing accelerator and detector challenges make such a collider a compelling…

Do the postulates of quantum mechanics survive in quantum gravity? The probabilistic interpretation of amplitudes, enforced by the unitarity of time evolution, is not guaranteed within the path integral formulation and has to be checked. Leveraging the gravitational path integral, we find a non-perturbative mechanism whereby a sum…

In response to the COVID-19 global pandemic, academic institutions, student programs and the entire world were forced into virtual only formats. Now that we are post-pandemic, there are lessons that can be permanently adopted from this experience that will lead to greater inclusion, accessibility, and connection amongst students. In this talk I…

Abstract: Living systems sense their physical environment and process this information to interact back with the environment. This continual loop that iterates between sensing, computation and action drives the emergence of complex behaviors. Physics plays a key role in this sensorimotor loop by imposing constraints on all of its basic elements…

## By Year

## By Category

- Astroparticle Seminar
- Atomic Physics Seminar
- Biophysics Seminar
- Condensed Matter Seminar
- Dark Cosmo Seminar
- Distinguished Lecture Series
- Donald R. Hamilton Colloquium
- Donald R. Hamilton Lecture
- Equity Diversity and Inclusion Initiative
- FPO
- Gravity Group Seminar
- Gravity Initiative Seminar
- High Energy Experiment Seminar
- High Energy Theory Seminar
- Mathematical Physics Seminar
- Particle Physics Seminar
- PCTS Seminar
- Phenomenology Seminar
- Princeton Quantum Colloquium
- Quantum Initiative
- Special Event
- Special Seminar
- Statistical Mechanics Seminar