Abstract: Certain strongly disordered many-body quantum systems are incapable of reaching thermal equilibrium. The nature of this so-called many-body localized (MBL) phase has recently been an active area of research. The phenomenon can be understood through perturbative approximations, but rare regions with weak disorder (Griffiths regions)…
Abstract:
A loop configuration on the hexagonal (honeycomb) lattice is a finite subgraph of the lattice in which every vertex has degree 0 or 2, so that every connected component is isomorphic to a cycle. The loop O(n) model on the hexagonal lattice is a random loop configuration, with the energy of of a loop configuration taken to…
Abstract:
Given n uniform points on the surface of a two-dimensional sphere, how can we partition the sphere fairly among them ? "Fairly" means that each region has the same area. It turns out that if the given points apply a two-dimensional gravity force to the rest of the sphere, then the basins…
By Year
By Category
- Astroparticle Seminar
- Atomic Physics Seminar
- Biophysics Seminar
- Condensed Matter Seminar
- Dark Cosmo Seminar
- Distinguished Lecture Series
- Donald R. Hamilton Colloquium
- Donald R. Hamilton Lecture
- Equity Diversity and Inclusion Initiative
- FPO
- Gravity Group Seminar
- Gravity Initiative Seminar
- High Energy Experiment Seminar
- High Energy Theory Seminar
- Mathematical Physics Seminar
- Particle Physics Seminar
- PCTS Seminar
- Phenomenology Seminar
- Princeton Quantum Colloquium
- Quantum Initiative
- Special Event
- Special Seminar
- Statistical Mechanics Seminar