One of the characteristic features of many marine dinoflagellates is their bioluminescence, which lights up nighttime breaking waves or seawater sliced
by a ship’s prow. While the internal biochemistry of light production by these microorganisms is well established, the manner by which fluid shear or mechanical
forces trigger…
Morphogenesis, the emergence of functional form in a developing organism, is one of the most remarkable examples of pattern formation in nature. Despite substantial progress, we still do not understand the organizational principles underlying the convergence of this process, across scales, to form viable organisms under variable conditions. We…
Simple organisms manage to thrive in complex environments. Remembering information about the environment is key to take decisions. Physarum polycephalum excels as a giant unicellular eukaryote being even able to solve optimisation problems despite the lack of a nervous system. Here, we follow experimentally the organism's response to a nutrient…
An animal eye is only as efficient as the organism’s behavioral constraints demand it to be. Efficient coding has been a successful organizational principle in vision, and to make a more general theory, behavioral, mechanistic, and even evolutionary constraints need to be added to this framework. In our work, we use a mix of known computational…
Many mature bacterial colonies and biofilms are complex three-dimensional (3D) structures. A key step in their developmental program is a transition from a two-dimensional (2D) monolayer into a 3D architecture. Despite the importance of controlling the growth of microbial colonies and biofilms in a variety of medical and industrial settings,…
The metabolic function of microbial communities emerges through a complex hierarchy of genome-encoded processes, from gene expression to interactions between diverse taxa. Therefore, a central challenge for microbial ecology is deciphering how genomic structure determines metabolic function in communities. Here we show, for the process of…
Cells across the tree of life respond to a sudden, nonlethal rise in temperature--heat shock--in similar ways. Following heat shock, proteins and mRNAs form clumps, certain genes turn on, and protein synthesis and cell growth sharply decline. The standard interpretation of these long-studied phenomena has held that thermal energy causes…
When experimenting with a large pool of species, a common problem is to determine a priori whether a certain subset of species can coexist when co-cultured. We propose a simple statistical model in which a number of species assemblages are observed, and the coexistence of novel assemblages is predicted out-of-fit. We discuss how this problem…
We have been working to measure and understand how ion fluxes and ionic interactions regulate fundamental biological processes, and in particular promote stress tolerance in bacteria. I will present our recent work that builds on our discovery of action potentials generated within bacterial biofilms. Specifically, we showed that bacteria use…
Please join us here:
https://princeton.zoom.us/j/98819915715?pwd=dmsrNWthYldVKytFY1BaNW0zWmVEQT09
Please join us here: https://princeton.zoom.us/j/307804923
To receive a password, please register at https://forms.gle/ee2ixqevod9WfFDn9
Deep learning for single cell biology
The study of living systems is challenging because of their high dimensionality, spatial and temporal heterogeneity, and high degree of variability in the fundamental unit of life the living cell. Recently, advances in genomics, imaging, and machine learning are enabling…
Please join us here: https://princeton.zoom.us/j/937188539
We review the dynamics of acute immunizing infections. We then use this as a backdrop to discuss the dynamics and control of the ongoing Coronavirus pandemic.
Gene expression in all organisms is controlled by short DNA and RNA sequences called cis-regulatory elements (CREs). Proteins in the cellular milieu bind to nucleic acid sequences present within CREs, interact with one another, and thus form macromolecular complexes that modulate the expression of nearby genes. My lab uses a combination of…
By Year
By Category
- Astroparticle Seminar
- Atomic Physics Seminar
- Biophysics Seminar
- Condensed Matter Seminar
- Dark Cosmo Seminar
- Distinguished Lecture Series
- Donald R. Hamilton Colloquium
- Donald R. Hamilton Lecture
- Equity Diversity and Inclusion Initiative
- FPO
- Gravity Group Seminar
- Gravity Initiative Seminar
- High Energy Experiment Seminar
- High Energy Theory Seminar
- Mathematical Physics Seminar
- Particle Physics Seminar
- PCTS Seminar
- Phenomenology Seminar
- Princeton Quantum Colloquium
- Quantum Initiative
- Special Event
- Special Seminar
- Statistical Mechanics Seminar